參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
美國(guó)樣本
暫無(wú)看了澳作Y(II)光量子產(chǎn)額測(cè)量?jī)x的用戶(hù)又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
應(yīng)用
Y(II)或ΔF/FM’ 或 (FM’ – FS )/FM’) 是經(jīng)受時(shí)間考驗(yàn)的光適應(yīng)測(cè)量參數(shù),比FV/FM對(duì)更多類(lèi)型的植物脅迫更加敏感。已有的大量證據(jù)表明FV/FM對(duì)許多種植物脅迫和健康植物的光系統(tǒng)II的測(cè)量十分出色,而Y(II)或光量子產(chǎn)額則可測(cè)量實(shí)際光照下光適應(yīng)環(huán)境和生理狀況的光系統(tǒng)II的效率。
原理
采用調(diào)制飽和脈沖原理,測(cè)量植物的葉綠素?zé)晒猓ㄟ^(guò)相關(guān)文獻(xiàn)的研究成果,計(jì)算植物的光量子產(chǎn)額及相對(duì)電子傳遞速率,同時(shí)可測(cè)量PAR、葉溫、相對(duì)濕度等環(huán)境參數(shù)。
特點(diǎn)
葉片吸收測(cè)量:提供葉片吸收測(cè)量及隨環(huán)境變化導(dǎo)致的葉片吸收變化。根據(jù)Eichelman (2004) 葉片吸收在健康植物的變化范圍在0.7~0.9 之間。因此,為獲得準(zhǔn)確的ETR或“J”,Y(II)測(cè)量?jī)x提供了一個(gè)可靠的測(cè)量方法,
FV/FM測(cè)量單元:可額外選配FV/FM測(cè)量?jī)x,用于暗適應(yīng)測(cè)量。
具有暗適應(yīng)葉夾
陽(yáng)光下屏幕可見(jiàn)
圖形顯示FV/FM曲線
2GB存儲(chǔ)空間
USB通訊
數(shù)據(jù)Excel查看
先進(jìn)的PAR葉夾:采用底部葉夾打開(kāi)裝置,防止測(cè)量時(shí)誤操作打開(kāi)葉夾。對(duì)傳感器進(jìn)行余弦校正,確保葉片相對(duì)測(cè)量光的角度不變。
FM’校正:對(duì)于具有高光照強(qiáng)度歷史的植物,完全關(guān)閉光反應(yīng)中心是一個(gè)問(wèn)題,Y(II)測(cè)量?jī)x使用Loriaux &Genty 2013的方法進(jìn)行FM’校正,確保誤差*小。
測(cè)量植物葉片的吸收:能夠直接測(cè)量植物葉片的吸收,而不是使用平均值0.84計(jì)算ETR。
自動(dòng)調(diào)制光設(shè)定:快速準(zhǔn)確自動(dòng)的調(diào)整合適的調(diào)制光強(qiáng),避免人工操作的誤差。
先進(jìn)算法避免飽和脈沖NPQ:采用25ms內(nèi)8點(diǎn)的平均值確定FM’,消除飽和脈沖NPQ的影響。
更精確的葉溫測(cè)量:采用非接觸式紅外測(cè)量,測(cè)量精度可達(dá)±0.5℃。
直接測(cè)量相對(duì)濕度:含有測(cè)量氣體交換使用的固態(tài)傳感器,可測(cè)量相對(duì)濕度。
降低葉片遮擋的設(shè)計(jì):傾斜的角度減少對(duì)葉片的遮擋,可以測(cè)量擬南芥等小葉。
系統(tǒng)組成
標(biāo)配:
Y(II)光量子產(chǎn)額測(cè)量?jī)x、充電器、USB電纜、便攜箱、2個(gè)吸收測(cè)量單元、U盤(pán)(包含說(shuō)明書(shū))。
可選:
FV/FM測(cè)量?jī)x及10個(gè)暗適應(yīng)葉夾、三腳架。
技術(shù)指標(biāo)
測(cè)量參數(shù):
Y(II)或ΔF/Fm‘、ETR、PAR、T、FMS或FM’、Fs、α(葉片吸收&葉片透射)。
監(jiān)測(cè)模式:可使用電腦,長(zhǎng)時(shí)間監(jiān)測(cè)Y(II)、ETR、葉片吸收、PAR、葉溫、相對(duì)濕度、及NPQ。
相對(duì)濕度:5%~95%,±2%。
可使用AC或USB供電,可配三腳架。
技術(shù)參數(shù):
光源
飽和脈沖:白色LED具有PAR時(shí)7000μmols
調(diào)制光:紅色LED 660nm,具有690nm短波過(guò)濾。
光化光源:僅可使用外部光源
檢測(cè)方法:調(diào)制脈沖法
檢測(cè)器&過(guò)濾器:具有700~750nm帶通過(guò)濾的PIN光電二極管
取樣速率:1~10000點(diǎn)/秒自動(dòng)切換。
測(cè)量時(shí)間:3s或長(zhǎng)期監(jiān)測(cè)
存儲(chǔ)空間:2GB
輸出:USB
尺寸:便攜箱尺寸為14”x 11”x 6”,儀器為9’’長(zhǎng)
質(zhì)量:Y(II) 測(cè)量?jī)x0.45 kg
FV/FM測(cè)量?jī)x0.36 kg.
總重1.95 kg.
產(chǎn)地:美國(guó)
文獻(xiàn)
Adams & Demming-Adams 2004 – Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. William W. Adams III and Barbara Demmig-Adams, From Chapter 22, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, pages 598 -599
Adams WW III, Demmig-Adams B. (1994) Carotenoid composition and down regulation of Photosystem II in three conifer species during the winter. Physiol Plant 92: 451-458
Ball MC. (1994) The role of photoinhibition during seedling establishment at low temperatures. In: Baker NR. And Bowyer JR. (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, pp365-3376 Bios Scientific Publishers, Oxford
Ball MC., Butterworth JA., Roden JS., Christian R., Egerton JJG., (1995) Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiology 22: 311-319
Baker N.R, Rosenquist E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Bukhov & Carpentier 2004 – Effects of Water Stress on the Photosynthetic Efficiency of Plants, Bukhov NG., & Robert Carpentier, From Chapter 24, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George
Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 627-628 Burke J. (2007) Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay, Plant Physiology, Jan. 2007, Vol 143, pp108-121
Burke J., Franks C.D. Burow G., Xin Z. (2010) Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm, Agronomy Journal 102:1118-1122 May 2010
Cavender-Bares J. & Fakhri A. Bazzaz 2004 – “From Leaves to Ecosystem: Using Chlorophyll Fluorescence to Assess Photosynthesis and Plant Function in Ecological Studies”. Jeannine Cavender Bares, Fakhri A. Bazzaz, From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, page 746-747 ETR Drought stress and npq
Cazzaniga S, Osto L.D., Kong S-G., Wada M., Bassi R., (2013) “Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photo oxidative stress in Arabidopsis”, The Plant Journal, Volume 76, Issue 4, pages568–579, November 2013 DOI: 10.1111/tpj.12314
Cheng L., Fuchigami L., Breen P., (2001) “The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves.”
Adams WW III, Demmig-Adams B., Vernhoeven AS., and Barker DH., (1995) Photoinhibition during winter stress – Involvement of sustained xanthophyll cycle-dependent energy-dissipation. Aust J. Plant Physiol 22: 261-276 Journal of Experimental Botany, 55(403):1607-1621
Journal of Experimental Botany, 52(362):1865-1872Crafts-Brandner S. J., Law R.D. (2000) Effects of heat stress on the inhibition and recovery of ribulase-1, 5- biphsphate carboxylase/ oxygenase activation state. Planta (2000) 212: 67-74
da Silva J. A. & Arrabaca M.C. (2008).Physiologia Plantarum Volume 121 Issue 3, Pages 409 – 420 2008
Eichelman H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Niinemets O., Laisk A. (2004) Development of Leaf Photosynthetic Parameters in Betual pendula Roth Leaves: Correlation with Photosystem I Density, Plant Biology 6 (2004):307-318
………………
更多文獻(xiàn)請(qǐng)來(lái)電查詢(xún)!
暫無(wú)數(shù)據(jù)!